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The asymptotic formula for the eigenvalues of the Laplace equation in three-dimensional domains bounded by
a finite number of closed and open nonintersecting Lyapunov surfaces with smooth boundaries has been de-
rived. This result is of importance in calculating stationary thermal conductivity in solid bodies in the pres-
ence of slots in them.

The eigenvalues of the Dirichlet problem for the Laplace equation have adequately been investigated in do-
mains bounded by smooth closed Lyapunov surfaces using the classical Green functions [1–3]. Below, we consider D

domains whose boundaries are the finite number of closed and open nonintersecting Lyapunov surfaces S = Σ2 σ,

where Σ is the finite number of closed surfaces, Σ = 2
k

 Σk, k 2 0, K
____

, and σ = 2
n

 σn, n = 1, N
____

. It is assumed that σn are

the two-sided surfaces bounded by smooth curves Γn,  and Σk and σn are contained within Σ0 for n 2 1, N
____

 and

k 2 1, K
____

. We will call σn slots. For solution of the Dirichlet and Neumann problems in domains with slots, two-valued

potentials with branch lines Γn have been introduced in [4, 5]; the jump formulas has been derived and the solvability

of the fundamental boundary-value problems for a space with a cut (slot) nas been proved using them. It follows that

the classical Green function Gn
∗(P, Q) exists for a space with a slot σn; this function will be written in the following

manner: it is completely defined and continuous in the domain E3 4 σn when P ≠ Q and, as a function of the point P,

is the solution of the Laplace equation vanishing for P 2 σn; when P = Q it has a point singularity of the form 
1

4πR
,

R = PQ
___

 is the distance between the points P and Q. Therefore, Gn
∗(P, Q) beyond σn is representable in the form

Gn
∗
 (P, Q) = 

1
4πR

 + gn (P, Q) = ωn (P, Q) + gn′ (P, Q) . (1)

Formula (1) yields, for determining gn(P, Q) and gn′ (P, Q), the equalities

gn (P, Q) = − 
1

4πR
 ,   gn′ (P, Q) = − ωn (P, Q) ,   P 2 σn ,

(2)

where ωn(P, Q) is the Green function of a two-sheeted Riemannian space with a smooth branch line Γn [4]. Such

functions were introduced by Sommerfeld [6] using the following conditions: ω(P, Q) as a function of the point P is
completely defined and continuous in the Riemannian space except for the point Q at which it has a singularity of the

form 
1

4πR
, R is the distance between the points P and Q, R = PQ, is regular at infinity, and completely satisfies

the Laplace equation in the Riemannian space except for the point Q and the branch line. Since σn is a two-sided

open surface, relations (2) are possible only when gn(P, Q) and gn′ (P, Q) are the two-valued functions with branch

lines Γn. This yields the following representation of the harmonic function Vn(P) in E3 4 σn:
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Vn (P) = ∫
σn

∫ Vn (Q) 
∂Gn

∗
 (P, Q)
∂n

 ds = ∫
σn

∫ Vn+ (Q) 
∂Gn

∗
 (P, Q+)

∂n
 dsQ − ∫

σn

∫ Vn− (Q) 
∂Gn

∗
 (P, Q−)

∂n
 dsQ ,

(3)

where n is a fixed normal to σn; Vn+(Q) and Vn−(Q) represent the limiting Vn(Q) values with the approximation
Q → σn "from above" and "from below," i.e., in the direction of the positive and negative normals n.

For the multiply connected domain D, we have the following formula:

V (P) = ∑ 

k=0

K

 ∫
Σk

∫ uk (Q) 
∂Gk (P, Q)

∂nQ
 dsQ + ∑ 

i=1

N

 ∫
σi

∫ ui (Q) 
∂Gi

∗
 (P, Q)
∂nQ

 dsQ .
(4)

Here the integral with respect to σi is understood in the same way as that in formula (3), Gk is the classical Green
function for the domain Dk = E3 4 Σk, Gi

∗ is the Green function for the domain E3 4 σi, and uk and ui are the unknown
densities to determine which we should use the boundary conditions

V (P)symbolΣk
 = fk (P) ,   P 2 Σk ;   V (P)symbolσi

 % = ϕi
%

 (P) ,   P 2 σi .
(5)

Expressions (4)–(5) yield the following system of integral Fredholm equations for determination of these densities:

ul (P) +   ∑ 

k≠l=0

K

   ∫
Σk

∫ uk (Q) 
∂Gk (P, Q)

∂nQ
 dsQ + ∑ 

i=1

N

 ∫
σi

∫ ui (Q) 
∂Gi

∗
 (P, Q)
∂nQ

 dsQ = fk (P) ,

uj (P) + ∑ 

k=0

K

 ∫
Σk

∫ uk (Q) 
∂Gk (P, Q)

∂nQ
 dsQ +   ∑ 

i≠j=1

N

   ∫
σi

∫ ui (Q) 
∂Gi

∗
 (P, Q)
∂nQ

 dsQ = ϕj (P) .

(6)

The following theorem holds: every continuous harmonic function bounded in domain D and whose first de-
rivatives in the vicinity of the branch line Γi act as O(1 ⁄ Ri

α), 0 ≤ α < 1 and Ri is the distance from P to Γi, is repre-
sentable uniquely in the form of the sum of harmonic functions in singly connected domains D0, D1, ..., Dn, T1, ...,
TN, Tk = E3 4 σk, k = 1, N

____
. In unbounded domains D1, ..., Dn and T1, ..., TN, the harmonic functions sought are regu-

lar at infinity, i.e., uniformly tend to 0 when x → ∞.
First we note that the Green formula for domain D yields the following representation:

V (x) = ∑ 

k=0

n

Vk (x) + ∑ 

i=1

N

Wi (x) , (7)

where

Vk (x) = ∫
Σk

∫ 



ω (x, y) 

∂V

∂ny
 − V (y) ∂ω (x, y)

∂ny




 dyS ;   Wi (x) = ∫

σi

∫ 



ω (x, y) ∂W

∂ny
 − W (y) 

∂ω (x, y)
∂ny




 dyS . (8)

Here ω(x, y) is the Green function of the Riemannian space whose branch lines are Γ = 2i=1
N  Γi. In the integral with

respect to Σk, we have a term of the regular part of the function ω(x, y), which is identically equal to zero. The
uniqueness of the representation (7) is easily proved by reduction to absurdity. Indeed, assuming the existence of these
two representations in one harmonic function V(x), we obtain, for their difference, the following equality:

  ∑ 

k=0

n

V
__

k (x) + ∑ 

i=1

N

W
__

i (x) = 0 ,   V
__

k (x) = Vk
1
 (x) − Vk

2
 (x) ,   W

__
i (x) = Wi

1
 (x) − Wk

2
 (x) , (9)
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whence

V
__

0 (x) = − ∑ 

k=1

n

V
__

k (x) − ∑ 

i=1

N

W
__

i (x) .
(10)

It follows from this formula that V
__

0(x) is a regular harmonic function throughout the Euclidean space E3; therefore, it
is identically equal to zero. Quite analogously we prove that V

__
k(x) B 0 and W

__
i(x) B 0, k = 1, n

___
 and i = 1, N

____
. The

existence of the solution of the initial Dirichlet problem follows from the Fredholm character of the system of equa-
tions (6).

We denote the Green function of the Dirichlet problem for the Laplace equation in domain D with boundary
S = Σ 2 σ (its existence follows from the existence of the solution of the Dirichlet problem for the Laplace equation
in domains with slots) by G(P, Q). We assume that λ = const > 0. Then the problem

∆v − λv = − ϕ (P) ,   P 2 D ,   vS = 0 (11)

is equivalent to the following integral equation [2]:

v (P) = − λ ∫∫∫ 
D

G (P, Q) v (Q) dQτ + ∫∫∫ 
D

G (P, Q) ϕ (Q) dQτ . (12)

The integral equation (12) has a unique solution for the function ϕ(P) continuously differentiable in domain D and
continuous up to boundary D.

We denote the Green function of the Dirichlet problem for the equation ∆v − λv = 0 in domain D by G1(P, Q, λ).
Then we obtain

G1 (P, Q, λ) = 
exp (− √λ  r)

4πr
 + g1 (P, Q, λ) ,   g1 (P, Q, λ)symbolS = − 

exp (− √λ  r)
4πr



S

 .

The solution of Eq. (11), which vanishes in 0 on S, can be represented in the following form:

v (P) = ∫∫∫ 
D

G1 (P, Q, λ) ϕ (Q) dQτ .

By the ordinary method, it is proved that G1(P, Q, λ) = G1(Q, P, λ), G(P, Q) = G(Q, P), 0 < G1(P, Q, λ) < exp (−√λ  r) ⁄ 
(4πr), r = PQ, and P 2 D.

It follows from what has been stated above that the Green function G1(P, Q, λ) is the resolvent of the inte-
gral equation (2). This leads to the following equality:

G1 (P, Q, λ) = G (P, Q) − λ ∫∫∫ 
D

G (P, Q′) G1 (Q′, Q, λ) dQ′τ . (13)

Therefore, from the representation of the resolvent for a symmetric integral equation we have [2]

G1 (P, Q, λ) = G (P, Q) − λ ∑ 

k=1

∞
vk (P) vk (Q)
λk (λk + λ)

 .
(14)

Here λk and vk(P) are the eigenvalues and eigenfunctions of the kernel G(Q, P), i.e., the equations ∆v − λv = 0 in do-
main D with a boundary condition v ⁄ S. Therefore, we obtain
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  ∫∫∫ 
D

G (P, Q′) G1 (Q′, Q, λ) dQ′τ = ∑ 

k=1

∞
vk (P) vk (Q)
λk (λk + λ)

 . (15)

We denote the coefficients of the Fourier series of the function G1(Q′, Q , λ) in the functions vk(Q′) by hk:

hk = ∫∫∫ 
D

vk (Q′)G1 (Q′, Q, λ) dQ′τ .

Since vk(Q′) is the solution of the equation ∆vk − λkvk = 0, we obtain

λkhk = ∫∫∫ 
D

∆vk (Q′)G1 (Q′, Q, λ) dQ′τ ,

(λk + λ) hk = ∫∫∫ 
D

G1(Q′, Q, λ)  (∆vk (Q′) − λvk (Q′)) dQ′τ .

The last formula yields [2]

hk = 
vk (Q)

λk + λ
 ,   ∑ 

k=1

∞
vk

2
 (P)

λk
2  = ∫∫∫ 

D

G
2(P, Q) dQ′τ ,

  ∑ 

k=1

∞
vk

2
 (P)

λk (λk + λ)
 = ∫∫∫ 

D

G (P, Q′) G1 (Q′, P, λ) dQ′τ .

Integrating the last equality with respect to D, we arrive at the following (since ∫∫∫ 
D

vk
2(P)dPτ = 1):

  ∑ 

k=1

∞
1

λk (λk + λ)
 = ∫∫∫ 

D

ψ (P, λ) dτ , (16)

where

ψ (P, λ) = ∫∫∫ 
D

G (P, Q) G1 (Q, P, λ) dQτ . (17)

Since

G1 (Q, P, λ) = 
exp (− √λ  r)

4πr
 + g1 (Q, P, λ) ,    G1 (Q, P, λ)S = 0 ,   r = PQ ,

we have, within D, the estimates

0 < G1 (Q, P, λ) < 
exp (− √λ  r)

4πr
 ,   0 ≥ g1 (P, Q, λ) ≥ − 

exp (− √λ  r)
4πr

 .
(18)

Analogous estimates are true of G(P, Q) and J(P, Q). It follows from them that

symbolψ (P, λ)symbol ≤ ∫∫∫ 
Di

exp (− √λ  r)

16π2
r
2  dτQ ≤ 

1

16π2 ∫ 
0

∞

∫ 
0

π

∫ 
0

2π

exp (− √λ  r) sin θdrdθdϕ = 
1

4π√λ
 .
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Furthermore, √λ  ψ(P, λ) → 
1

4π
 is uniform in every closed subdomain D′ 2 D. Therefore, we obtain

  lim
λ→ +∞

   ∫∫∫ 
D

√λ  ψ (P, λ) = 
v

4π
 ,   lim

λ→ +∞
   √λ  ∑ 

k=1

∞
1

λk (λk + λ)
 = 

v
4π

 . (19)

We use the following theorem [2]:
T h e o r e m. If the series

s (λ) = ∑ 

k=1

∞
ck

λk + λ
 ,   where   ck > 0 ,   λk > 0 ,   0 ≤ λ1 ≤ λ2 ≤ ... ,   λn → ∞

converges for λ > 0 and

  lim
λ→ +∞

   √λ  s (λ) = H ,

  lim
λ→ +∞

   
1
√λ

  ∑ 

λk≤λ

 ck = 
2H
π

 ,
(20)

in the last sum, summation extends to those k values for which λk ≤ λ.

As applied to the series (19), we set ck = 
1
λk

 and H = 
v

4π
 and from equality (20) we have

  lim
λ→ +∞

   
1

√λ
  ∑ 

λk≤λ

 
1

λk

 = 
v

2π2
 , (21)

whence

  ∑ 

λk≤λ

 
1

λk

 = 
v

2π2 √λ  + ε (λ) √λ  ,

where ε → 0 for λ → ∞ or for λ = λn,

  ∑ 

k=1

n
1

λk

 = 
v

2π2
 √λn  + εn √λn  .

Introducing the notation

σn = ∑ 

k=1

n
1
λk

 ,

we write

n = ∑ 

k=1

n

λk 
1
λk

 = σ1 (λ1 − λ2) + σ2 (λ2 − λ3) + ... + σn−1 (λn−1 − λn) + σnλn
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and for the nondecreasing function

ϕ (λ) = 
v

2π2
 √λ  + ε (λ) √λ  ,

we obtain

 ∫ 
0

λn

ϕ (λ) dλ = σ1 (λ1 − λ2) + σ2 (λ2 − λ3) + ... + σn−1 (λn−1 − λn) = 
v

3π2 λn
3 ⁄ 2 + ∫ 

0

λn

ε (λ) √λ  dλ .

From the determination of ε(λ), we have

1

λn
3 ⁄ 2

 ∫ 
0

λn

ε (λ) √λ  dλ → 0   at   n → + ∞ .

Therefore, we obtain the following expression for n:

n = 
v

6π2 λn
3 ⁄ 2 + εnλn

3 ⁄ 2 ,

whence

λn = 




6π2
n

v





3 ⁄ 2

 + εnn
3 ⁄ 2 ,

(22)

where εn → 0 for n → ∞, v is the volume of domain D whose boundary contains smooth closed surfaces Sk, k = 0, N
____

and smooth open surfaces (slots σm, m = 1, M
____

) bounded by smooth curves Γm.
Formula (22) was obtained earlier by Weyl [1] for domains bounded by smooth closed surfaces Σ, and it has

been established for the first time in the case of domains with slots.

NOTATION

P, point E3, x, its radius vector; Q, point E3, y, its radius vector; S, surface; s, S-surface element; v, volume
of domain D; λn, eigenvalues of the Dirichlet problem.
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